## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

Cambridge International Advanced Subsidiary and Advanced Level

## MARK SCHEME for the May/June 2015 series

## 9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

 ${\small \circledR}$  IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2 | 2 Mark Scheme                                      |      | Paper |  |
|--------|----------------------------------------------------|------|-------|--|
|        | Cambridge International AS/A Level – May/June 2015 | 9702 | 22    |  |

1 (a) (work =) force 
$$\times$$
 distance or force  $\times$  displacement or ( $W =$ )  $F \times d$  M1

units of work: 
$$kg m s^{-2} \times m = kg m^2 s^{-2}$$
 A1 [2]

(c) 
$$R = V/I$$
 units of  $V$ : kg m<sup>2</sup> s<sup>-2</sup>/As **and** units of  $I$ : A

$$R = P/I^2$$
 [or  $P = VI$  and  $V = IR$ ] (B1)  
units of  $P$ : kg m<sup>2</sup> s<sup>-3</sup> and units of  $I$ : A (C1)

or  

$$R = V^2/P$$
 (B1)  
units of V: kg m<sup>2</sup> s<sup>-2</sup>/As **and** units of P: kg m<sup>2</sup> s<sup>-3</sup> (C1)

units of 
$$R$$
:  $(kg m^2 s^{-2}/A^2 s =) kg m^2 s^{-3} A^{-2}$  A1 [3]

(b) (i) 
$$v = u + at$$
 (or  $s = ut + \frac{1}{2}at^2$  and  $v^2 = u^2 + 2as$ )
$$= 0 + (3.00 - 1.25) \times 9.81$$
C1

$$= 17.2 (17.17) \,\mathrm{m \, s^{-1}}$$
 A1 [3]

(ii) 
$$s = ut + \frac{1}{2}at^2$$

$$s = \frac{1}{2} \times 9.81 \times (1.25)^2 = 7.66$$
 C1  
 $s = \frac{1}{2} \times 9.81 \times (1.75)^2 = 15.02$  C1

$$(distance = 7.66 + 15.02)$$

$$[v = u + at = 0 + 9.81 \times (2.50 - 1.25) = 12.26 \,\mathrm{m \, s^{-1}}]$$

or

$$s = \frac{1}{2} \times 9.81 \times (1.25)^2 [= 7.66]$$
 (C1)

$$s = 12.26 \times 0.50 + \frac{1}{2} \times 9.81 \times (3.00 - 2.50)^{2} [= 7.36]$$
 (C1)

 $(distance = 2 \times 7.66 + 7.36)$ 

Example alternative method:

$$s = (v^2 - u^2)/2a = (12.26^2 - 0)/2 \times 9.81 [= 7.66]$$
 (C1)

$$s = (v^2 - u^2)/2a = (17.17^2 - 12.26^2)/2 \times 9.81 [= 7.36]$$
 (C1)

 $(distance = 2 \times 7.66 + 7.36)$ 

| Page 3 |     | 3    | Mark Scheme                                                                                                     |         | Paper |     |
|--------|-----|------|-----------------------------------------------------------------------------------------------------------------|---------|-------|-----|
|        |     |      | Cambridge International AS/A Level – May/June 2015                                                              | 9702    | 22    |     |
|        |     |      | 22.7 (22.69 or 23) m                                                                                            |         | A1    | [3] |
|        | (   | iii) | (s = 15.02 – 7.66 =) 7.4 (7.36) m (ignore sign in answer)                                                       |         | A1    |     |
|        |     |      | down                                                                                                            |         | A1    | [2] |
|        | (c) | stra | aight line from positive value of $v$ to $t$ axis                                                               |         | M1    |     |
|        |     | sar  | ne straight line <u>crosses</u> $t$ axis at $t = 1.25$ s                                                        |         | A1    |     |
|        |     | sar  | me straight line continues with same gradient to $t = 3.0 \mathrm{s}$                                           |         | A1    | [3] |
| 3      | (a) | (i)  | (vertical component = 44 sin 30° =) 22 N                                                                        |         | A1    | [1] |
|        |     | (ii) | (horizontal component = 44 cos 30° =) 38(.1) N                                                                  |         | A1    | [1] |
|        | (b) | W:   | × 0.64 = 22 × 1.60                                                                                              |         | C1    |     |
|        |     | (W   | =) 55 N                                                                                                         |         | A1    | [2] |
|        | (c) | or I | as a horizontal component (not balanced by <i>W</i> )  has 38 N acting horizontally  N acts on wall             |         |       |     |
|        |     |      | vertical component of <i>F</i> does not balance <i>W</i> F and <i>W</i> do not make a closed triangle of forces |         | B1    | [1] |
|        | (d) | line | from P in direction towards point on wire vertically above $W$ and direc                                        | tion up | B1    | [1] |
| 4      | (a) | (p = | =) mv                                                                                                           |         | C1    |     |
|        |     | Δρ   | $(= -6.64 \times 10^{-27} \times 1250 - 6.64 \times 10^{-27} \times 1250) = 1.66 \times 10^{-23} \text{ Ns}$    |         | A1    | [2] |
|        | (b) | (i)  | molecule collides with wall/container and there is a change in momen                                            | itum    | B1    |     |
|        |     |      | change in momentum / time is force or $\Delta p = Ft$                                                           |         | B1    |     |
|        |     |      | many/all/sum of molecular collisions over surface/area of container propressure                                 | oduces  | B1    | [3] |
|        |     | (ii) | more collisions per unit time so greater pressure                                                               |         | B1    | [1] |
| 5      | (a) | cur  | ved line showing decreasing gradient with temperature rise                                                      |         | M1    |     |
|        |     | sm   | ooth line not touching temperature axis, not horizontal or vertical anywh                                       | nere    | A1    | [2] |
|        | (b) | (i)  | (no energy lost in battery because) no/negligible internal resistance                                           |         | B1    | [1] |

| Page 4 | age 4 Mark Scheme                                  |      | Paper |
|--------|----------------------------------------------------|------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9702 | 22    |

(ii) 
$$I = V/R$$

$$= 8/15 \times 10^{3} \text{ or } 1.6/3.0 \times 10^{3} \text{ or } 2.4/4.5 \times 10^{3} \text{ or } 12/22.5 \times 10^{3}$$

$$= 0.53 \times 10^{-3} \text{ A}$$

$$A1 \quad [2]$$
(iii)  $\text{ p.d. across } X = 12 - 8.0 - 3.0 \times 10^{3} \times 0.53 \times 10^{-3} (= 2.4 \text{V})$ 

$$R_{X} = 2.4/(0.53 \times 10^{-3})$$

$$C1$$

$$R_{X} = 2.4/(0.53 \times 10^{-3})$$

$$C1$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$C1$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$C1$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.0 - 3.0) \times 10^{3}$$

$$R_{X} = (22.5 - 15.$$

| Page 5 | Mark Scheme                                        | Syllabus | Paper |
|--------|----------------------------------------------------|----------|-------|
|        | Cambridge International AS/A Level – May/June 2015 | 9702     | 22    |

(c) 
$$v = f\lambda$$
 C1  
 $f = 3.0 \times 10^8 / (2.8 \times 10^{-2}) [= 1.07 \times 10^{10} \text{Hz}]$  C1  
11 (10.7) GHz A1 [3]

7 (a) 92 protons and 143 neutrons

B1 [1]

(b)

|   | value |                         |        |
|---|-------|-------------------------|--------|
| а | 1     |                         |        |
| b | 0     | (a and b both required) | B1     |
| С | 141   |                         | B1     |
| d | 55    |                         | B1 [3] |

(c) kinetic energy (of products) or gamma/ $\gamma$  (radiation or photon) B1 [1]

(d) (total) mass on left-hand side/reactants is greater than (total) mass on right-hand side/products

M1

difference in mass is (converted to) energy

A1 [2]